Товары из Китая

Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки


  • Цена: 36 USD (20 шт. + 5 коробок)
  • В начале сентября нашел 4 шт. «зеленых» PKCELL AA, обжатых полиэтиленом. 4.5 года назад я их «совершенно случайно» отложил после получения из оф. магазина на Али…

    Может, кому-то этот материал будет интересен, ибо вера в «китайское чудо» — она трудно искоренима.

    Внимание! Очень много букв и картинок.

    Введение

    1. Целью настоящего обзора было не столько представление полученных экспериментальных результатов, сколько очередная попытка рационального объяснения действий автора с привлечением знаний из области электрохимии и практики использования гальванических элементов. Думаю, такое изложение несколько интереснее, чем тупая фактология. Причем, в данной публикации не сделано никаких «великих открытий» — многие делают примерно тоже самое, что и автор. Только большинство не понимает почему они делают именно так. И можно ли делать несколько иначе. Не понимают этого и ~100% блогеров, наставляющих своих читателей на путь истинный. К просветительской деятельности данной категории граждан я отношусь в целом положительно. Пока они не начинают фантазировать и придумывать несуществующие сущности.

    2. Многие моменты взяты из книги

    Химические источники тока: Справочник / Под ред. Н. В. Коровина и А. М. Скундина. М.: Изд-во МЭИ. 2003. 740 с. Ее можно найти ЗДЕСЬ (04. Коровин)

    Относительно солидности издания. Мало того, что издание МЭИ (ведущая организация по данному направлению на просторах экс-СССР), так еще гляньте список авторов:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Это не просто справочник, это обобщение информации по ХИТ на начало нулевых, когда основные моменты по «никелю» были уже выяснены и исследования в данном направлении начали тихо сворачиваться. Единственное, что появилось нового после 2003 г. — начало массового производства Энелупов корпорацией Саньё (2005 г.). Но это ничего не меняет, ибо технология полностью закрыта — и тогда, и сейчас. Не исключено, что отсутствуют и внятные патенты — китайцы растащат основные нау-хау, на которых основана технология.

    3. Ежели вас «никель» мало волнует, но есть вопросы по практическому использованию и хранению литий-иона, то настоятельно рекомендую заглянуть в этот обзор, раздел «2.2. Про Li-ion: как хранить и как пользовать долго и счастливо?». Там подборка дайджестов по данному вопросу от серьезных организаций и исследовательских групп. И я ничего не придумывал, просто перевел, осмыслил и скомпоновал.

    4. Часть материалов была изложена в предыдущих обзорах. Но здесь сделана попытка собрать все воедино, с существенными сокращениями и дополнениями. Что бы более не возвращаться к данным вопросам.

    1. Историческая справка

    Опыт использования батареек и аккумуляторов PKCELL у меня вроде как имеется. Не так что бы огромный, но все таки.

    1. Несколько раз покупались «зеленые» PKCELL ААА и АА в мелких партиях по 8-12-20 шт. Некоторые из них использовались при подготовке материалов к обзорам — один или два здесь были опубликованы.

    2. Так же до сих пор есть запас «таблеток», т.к. в свое время их было закуплено изрядно:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    3. Был даже «литий» в мелких банках и еще что-то, уже не помню

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Я бы не сказал, что испытываю хоть какую-то радость от пользования продукций PKCELL. Скорее наоборот. Но явного отвращения тоже нет. Отношусь к ней спокойно. Даже несколько обреченно, как к неизбежному злу: качество средне-китайское, живучесть каждого отдельного экземпляра — непредсказуема. Надо всегда иметь запаску на замену и быть всегда начеку. Зато песок в банки не засыпают и 9000+ мАч не пишут — уже за это им Большое Человеческое Спасибо (я вполне серьезно).

    =======================

    Итак, в начале марта 2018 в официальном магазине PKCELL на Али (лицензия) заказал 20 шт. «зеленых» AA

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    В описании лота было заявлено 5 блистеров по 4 аккумулятора + 5 коробочек «в подарок». На самом деле пришло 5 комплектов вот такого

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Причем, полиэтиленовые усадки оказались не герметичны, а имели характерные разрезы с двух сторон

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Такое впечатление, что откачивали воздух из длинной ПЭ кишки с N банок, о потом ее резали как колбасу (по 4 аккумулятора). Ну и ладно. Спор возбуждать не стал — какая разница, в блистерах или так? Хотя потом пожалел. Может, хотя бы на блистерной упаковке была обозначена дата той самой упаковки? На самих элементах даты изготовления нет нигде. На PKCELL АА и ААА она ВСЕГДА отсутствует. Прочитавши следующий раздел вы поймете почему «это не баг, это фича», ибо манагеры PKCELL сами плохо представляют когда и кем ЭТО было изготовлено.;)

    ==========================

    Первоначальная идея покупки — использование в качестве элементов питания Fluke 287: 2-3 комплекта по 6 шт. + остальное в запас. Но все оказалось не так просто. Ибо китайские аккумуляторы — они такие китайские… Проверка первых 12 аккумуляторов показала, что они отличаются по остаточному напряжению: 7-8 шт. показали 1.30 В или чуть больше, остальные — около 1.20. Последние были сразу исключены из кандидатов. Те, кто показали меньший саморазряд были прогнаны через Лии-500 на предмет текущей емкости. Шесть лучших сформировали первый пул для питания Fluke 287. Второй слепил из 6 белых ЛАДДА АА. Эти два комплекта служат до сих пор. Но есть «маленький» нюанс — в команде PKCELL-ов за 4.5 года произошло несколько замен, а при крайней замене даже появилось 2 белых Энелупа. Ибо в процессе эксплуатации обнаруживались «слабые звенья» — элементы разряжались заметно быстрее остальных.

    Fluke 287 я использую нерегулярно, от случая к случаю. Поэтому бывает, что замена комплекта происходит через 1-1.5 года. Но когда идет запись данных в память Флюка и построение кривых, комплект «съедается» мультиметром меньше чем за сутки. Что-то типа такого

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    А теперь прикинем уровень целесообразности той замечательной покупки.

    Из 20 шт.:

    — 4 на долгое хранение (герои этого обзора)

    — 4 подарил

    — 12 — по основному назначению, из которых отобраны 6 лучших. Из этих 12 в строю осталось 4.

    Остальные непонятно где: часть из них уже утилизирована, часть где-то внутри устройств или отданы знакомым с игрушками.

    Есть величайшее изречение: «Эх, что бы я был таким умным ДО, как моя Сара ПОСЛЕ!»

    Вот и я сейчас считаю, что было бы более разумно не маяться дурью с этими «зелеными», а на том же ru.nkon.nl купить 12 белых Энелупов

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Плюс еще доставка €9.90. Всего €39.75. По курсу на март 2018 — это было бы 2700-2800 руб. Т.е. на целую 1000 руб дороже 20 ПКСеллов. Но это в худшем случае. Не исключено, что тогда ценники были чуть ниже, что-то из Энелупов продавалось россыпью или со скидками. На ru.nkon.nl раньше иногда практиковалось снижение цены каждого экземпляра на ~€1.00 при покупках от 10 или 20 шт…

    И вот сейчас мне кажется, что при покупке 12 белых Энелупов вместо 20 банок китайской бестолковщины, вопрос о двух комплектах питания для Флюка был бы закрыт РАЗ и НАВСЕГДА. При полном отсутствии головняков.

    Маленькое обобщение

    Это чистое ИМХО, которое никому не навязываю, т.к. люди учатся исключительно на собственных ошибках. Изречение «Дураки учатся на своих ошибках, а умные — на чужих» придумали дураки с ЧСВ, почему-то считающие себя «умными» от рождения. И это тоже ИМХО.:)

    После стольких лет плотного юзанья и экспериментирования с китайчатиной и «фирмОй» (Япония, Корея), после изучения истории развития коммерческих ЭХ систем, я пришел к печальному выводу.

    Покупка Ni-MH и Li-ионных китайских аккумуляторов экономически нецелесообразна.

    Возможно, существуют некие особые ситуации или необычные варианты использования. Но это исключения из общего правила.

    И еще несколько дополнений
    ► Дополнение от Кэпа.

    Почему китайские аккумуляторы, по крайней мере те, которые продаются за пределами Поднебесной лаоваям, как были Г., так таковыми и остаются? Потому что они их лепят по технологиям, не доведенным до ума. Плюс экономия на спичках. Плюс отсутствие ОТК.

    Как только китайчатина доходит до уровня близкого к «фирмЕ» она внезапно получает ценник, сравнимый с «фирмОй». Или даже чуть выше.

    Ваш Кэп.

    ► Если вы покупаете что-то типа розовой Лиитокалы и оно в 2-3 раза дешевле розового Самсунга, то не думайте что оно в 2-3 раза хуже того розового Самсунга. Оно еще хуже. Вас опять надули.

    ► Почему китайские инженеры не доводят аккумуляторы до уровня «фирмЫ»? Не хотят или не могут? Насчет «хотят — не хотят», «могут — не могут» я не в курсе.

    Просто нужно иметь ввиду следующее.

    Электрохимиками исследованы многие тысячи ЭХ систем. Около сотни пошли в массовое производство, т.е. стали коммерческими. Из них только с десяток стали не батарейками, а аккумуляторами. А уж до ума в конце-концов доведены считанные единицы. Считаем на пальцах одной руки:

    — свинцовый кислотный

    — Ni-H₂ (серьезная штука, в быту не встречается)

    — Ni-Cd

    — Ni-MH (переделанный Ni-H₂)

    — Li-ионные в разных вариациях (Li/LiFePO₄ и LTO — из той же оперы)

    — может, чего забыл?;)

    Почему их так мало? Почему систему Ni-Fe так и не сделали хорошо циклируемой, хотя она и является коммерческой? А потому что для того доведения до ума нужно огромное желание и немалое количество бабла. Но огромное желание может появиться у разработчика и будущего производителя, если система на сей момент считается перспективной. И это еще не все. Любой «новый» (для данного производителя) аккумулятор выходит на рынок в той или иной мере сырым. Это относится и к новым типам аккумуляторов и к некоторым новым моделям («шоколадки» от LG 1-ого поколения и т.п.). А далее непрерывно, в течении нескольких лет, совершенствуется технология производства (и опять вкладываются мозги и бабло). Более того, японцы этот процесс считают нескончаемым, пока данный товар/группа товаров выпускаются: философия кайдзен.

    Китайцы вменяемых Ni-MH никогда не выпускали и уже выпускать не будут, т.к. данная ЭХ система тихо уходит в историю вслед за предшественником (Ni-Cd) и даже своим последователем (весь литий-ион, кроме ныне попсового LTO). Кроме того, производство любых аккумуляторов со стабильными, предсказуемыми параметрами, предполагает определенную культуру производства, хорошо отработанную технологию, контроль качества после наиболее ответственных операций, жесткое выполнения требований по чистоте и составу исходных материалов… бла-бла-бла.

    Поэтому и вменяемого литий-иона от китайцев тоже пока не видать.

    Аминь.

    2. Что такое PKCELL и что такое Ready to Use

    PKCELL — это широко распиаренный у нас китайский бренд от одноимённой конторы Shenzhen PKcell battery Co., не имеющей собственного фабричного производства. Торгует исключительно ХИЭЭ (химические источники электрической энергии), которые у электриков называются ХИТ (химические источники тока), а так же зарядными устройствами к оным.

    Все это делается на неких китайских заводах по ОЕМ/ODM-заказам. От PKCELL — только дизайн внешнего вида, сами банки и их содержимое — тут уж как повезет. Мне кажется, «команда специалистов» PKCELL в делах гальванических не шибко разбирается. Зато маркетинг и дистрибуция — это ихнее все.;)

    Полный список товаров, доступных для поставки в РФ, можно глянуть ТУТ.

    Там есть забавные моменты. Кроме маркированного аки «PKCELL» присутствуют и иные «торговые марки»:

    — Батареи аккумуляторные литий-ионные герметичные, торговой марки «ЭВОТОР»

    — Аккумуляторные батареи свинцово-кислотные герметизированные, с маркировкой «СТМ»

    — Батарейки алкалиновые с маркировкой «kari»

    — Батарейки щелочные, торговая марка «AIRLINE»…

    Короче, Shenzhen PKcell battery Co. — чисто торговая контора типа «Сяоми» до покупки ZMI, но специализация существенно уже.

    2.1. Какие бывают аккумуляторы PKCELL AA?

    Они бывают «желтые» и «зеленые».

    «Желтые» заявлены как «обычные», а «зеленые» — как Ready to Use. На картинках — их ассортимент, заявленный на родном сайте pkcell.net.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    В красных рамках — то что существует в природе. Т.е., то что могут купить обычные лаоваи на своих лаовайских ресурсах типа Али. Обратите внимание, что из зеленых только 600 mAh находится в красной рамке. Остальных нет в продаже. По крайней мере, я так и не нашел оные. Специалисты по Таобао — гляньте, плиз, может хоть на Тао имеются зеленые 2000 и 2600?:)

    Но главный прикол в том, что «зеленые» AA на 600 mAh — это в общем-то для тонких ценителей изящного. А вот «зеленые» AA на 2200 mAh (о которых нет ни слова на родном сайте) — это основная продаваемая и покупаемая модель «зеленых» AA. Все обзорщики именно их и обозревали, часто захлебываясь от восторгов. Даже широко известного в узких кругах датчанина HKJ не минула чаша сия 😉

    2.2. Что такое Ready to Use?

    RTU/ R2U (Ready To Use),

    он же — Always Ready,

    он же — Stay Charged,

    он же — Pre-Charged,

    он же — Ready When You Are!

    Все это об одном и том же: купленный аккумулятор готов к использованию, ибо заряжен еще на заводе-изготовителе. Как правило, при этом неявно предполагается, что аккумулятор разряжается достаточно медленно. Т.е., имеет быть Low Self-Discharge (LSD). В прошлые времена PKCELL заявляла макс. саморазряд не более 20% за первый год. Сейчас эта информация с сайта чудесным образом исчезла. Понятно, что скорость потери заряда зависит от времени хранения нелинейно и далее заметно снижается. Если у PKCELL это происходит аналогично Энелупам (см. п. 2.3), то через 5 лет должно быть потеряно ~50-60%. Но никак не 100%, как было показано в разделе 3.

    2.3. Low Self-Discharge в понимании Саньё/Панасоника

    [Я это рассматривал в своих прошлых обзорах. Здесь — просто напомню.]

    Low Self-Discharge – малый саморазряд ячейки в процессе длительного хранения. Причем, очень длительного. Речь идет о годах. Но при невысоких температурах: +20°С или ниже. На картинке – то, что обещают для белых Энелупов в рекламном проспекте Панасоника на 2017-2018 гг.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Насчет 10 хранения лет и саморазряда 30%. Сравните два блистера с белыми Энелупами (взято из проспектов Панаса):

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    5 лет хранения волшебным образом превратились в 10.

    В любом случае заявление о потере 30% емкости через 5 или 10 лет хранения носит скорее рекламный характер. Ибо предполагается хранение в условиях, близких к идеальным: температура не выше +20°С, относительная влажность не выше 85% и т.п. На практике такое редко осуществляется. Поэтому потери могут быть заметно больше. В качестве забавного примера можете заглянуть СЮДА, раздел 5.

    3. Остаточная емкость

    После извлечения из ПЭ усадки элементы были промаркированы. Да не просто так, а именно в том порядке, как они были расположены в усадке. На всякий случай, вдруг это на что-то влияет.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Затем измерена разность потенциалов в двух вариантах: НРЦ (напряжение разорванной цепи) и под малой нагрузкой (резистор 30 Ω). Благо, мультиметр HoldPeak HP-37C второе позволяет тоже сделать.

    Дополнительная информация
    Два режима измерений (на нагрузках 900 Ω и 30 Ω) обеспечивает мой штатный мультиметр HoldPeak HP-37C.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Обр. №1:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Остальные:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Обратите внимание на обр. №3. Мало того, что за несколько лет хранения ячейка разрядилась ниже плинтуса. Так еще и на слабенькой нагрузке (23мА=0.68В/30Ω=0.05С) она «просаживается» практически «в ноль». Первопричиной является технологический брак. Других объяснений я просто не вижу. Нет, жить оно будет. И даже работать. Но не так как заявлено аб иницио. А в сборке — это типичное «слабое звено».

    Какова же остаточная емкость этих банок (при заявленных 2200 мАч)?

    Узнать это — делов на несколько минут.

    SkyRC MC3000

    Разряд током 0.2 С (0.44 А) до стандартного значения 1.00 В.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Обр. №3 в коме, три остальных банки практически пусты. Вот такой у нас Ready to Use по-китайски через 4.5 года хранения в обычной жилой комнате (северная экспозиция), с вечно приоткрытым окном и Т = 15-25°С. В середине лета бывает около 30°С. Но это 1-2 недели, не больше.

    4. Легкое оживление и проверка общей емкости по рекомендациям МЭК (ГОСТ 61951-2-2019)

    ГОСТ 61951-2-2019

    В МС3000 эта процедура называется «Break_in». Из инструкции МС3000:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Смысловой перевод

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Примечание. Не всему, что здесь понаписано, следует слепо доверять.

    Вот эти моменты — весьма спорные:

    «Также эту процедуру полезно проводить раз в пол года…»

    Зачем? В случае Ni-Cd — понятно, что речь идет о борьбе с «эффектом памяти» на ранних стадиях развития процесса. Но в запущенных случаях «Break_in» — мертвому припарка. По мнению Кадекса в таких случаях следует разряжать до ~0.4В.

    Для Ni-MH наличие «эффекта памяти» не доказано. По крайней мере, я не видел ни одной научной публикации по этому поводу. Тем паче, что тот самый «эффект памяти» у Ni-Cd определяется исключительно особенностями кадмиевого электрода. Кадмиевого электрода в ячейке Ni-MH нет по определению. А для «никелевого» электрода он вроде как до сих пор не зарегистрирован ни в одной из коммерческих аккумуляторных систем: Ni-H₂, Ni-MH, Ni-Cd за без малого 70 лет их активного практического использования. Про Ni-H₂ я уже раза 2 писал в предыдущих обзорах (спойлер «Аккумуляторы Ni-H или Зачем автор рассказывал про то, что водород…»).

    «Процесс длительный, более суток, и может повторятся до пяти раз,

    или пока полученные данные номинальной емкости не будут соответствовать заявленной.»

    Не, ну повторить 5 раз — это прекрасно для набора статистики. И всего-то неделя круглосуточно…;) Но происходит ли при этом «оживление» ячейки, если это NiMH, а не NiCd? Или опять про борьбу с «эффектом памяти»?

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Был выбран алгоритм:

    — заряд током 0.1С, 16 часов

    — пауза 1 час

    — разряд током 0.2С до напряжения 1.00В (определение емкости).

    Было принято, что С=2200 mAh.

    Результат применения процедуры «Break_in»:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    В принципе, все живы и работоспособны. Даже №3. Хотя его емкость отличается от трех остальных на 20%. В чем же первопричина такого состояния №3? По моему мнению, произошла неудачная формовка активной массы одного из электродов при первом заряде на заводе.

    Потеря емкости могла произойти:

    — или сразу после неудачной первичной формовки на производственной линии

    — или после весьма длительного хранения в переразряженном состоянии (которое есть следствие той самой неудачной формовки).

    Сам по себе глубокий переразряд Ni-MH с последующем хранением до 14 суток никак не сказывается на «здоровье» ячеек — обзор.

    Но есть мнение от ув. serge_petrov, что намного более длительное хранение (порядка года) в состоянии переразряда может привести к потере емкости. При этом Сергей дал ссылку на интересную статью.

    К сожалению, в том материале нет прямых указаний на разрушение MH-электрода вплоть до экстремальной ситуации переполюсовки электродов. С другой стороны, раз потеря емкости переразряженных ячеек после очень длительного хранения наблюдается на практике — это нельзя сбрасывать со счетов.

    5. Для интересующихся. Что происходит в ходе заряда Ni-MH? В чем суть заряда током 0.1С в течении 14-16 часов?

    [Сначала хотел все спрятать под спойлер. Но так как этот материал я публикую впервые, то решил вынести в отдельный раздел. А под спойлер спрятать наиболее сложную для понимания «химическую» часть. Если с химией не шибко дружите, то лучше туда не заглядывать.]

    Про «древний» и «сверхмедленный» заряд «никелевых» ячеек (Ni-Cd и Ni-MH) многие слышали.

    Как гарантированно зарядить Ni-MH от 0 до 100% его емкости и полностью исключить вредное явление перезаряда? Строго говоря — никак. Заряд током 0.1С в течении 14-16 часов — просто наименьшее из всех зол. Перезаряд (в химическом понимании) там присутствует, но он ничтожно мал. Идея набора емкости по времени (с огромным запасом) базируется на том, что надежного критерия окончания заряда физически не существует.***

    ***Примечание. Это относится к аккумуляторам всех электрохимических систем, а не только к Ni-MH. Если вы до сих пор думаете, что для «лития» такой критерий есть (волшебные 4.20 В, предложенные Сони в 90-х), то глубоко ошибаетесь. Верхний предел окончания заряда ячейки можно варьировать. При этом меняется уровень деградации SEI (защитного слоя между анодом и электролитом), что отражается на уровне устойчивости к циклированию:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Рассмотрим основные электрохимические (ЭХ) процессы, протекающие при заряде Ni-MH ячейки. Таких процессов ровно три:

    ☀ Основной процесс, заряд ячейки (Ni⁺²→Ni⁺³)&(М → МН)

    ☀☀ Кислородный цикл

    ☀☀☀ Переразряд на никелевом электроде Ni⁺³ → Ni⁺⁴

    При заряде от 0 до 100% эти процессы протекают всегда и они протекают параллельно. Это конкурирующие реакции. При этом они забирают некоторую долю эл. энергии, подводимой извне. Если добавить неизбежное тепловое рассеяние по Джоулю-Ленцу и не учитывать маловероятные побочные процессы, то получаем полный энергетический баланс:

    E(от внешнего источника)=E(основной процесс)+E(кислородный цикл)+E(Ni⁺³→Ni⁺⁴)+E(джоулево тепло).

    Но интенсивности протекания (скорости хим. реакций) трех химических процессов на разных этапах заряда очень сильно отличаются. Поэтому в ряде случаев наличием того или иного процесса можно пренебречь (скорость → 0).

    Какие же факторы оказывают влияние на интенсивность протекания трех конкурирующих процессов?

    ► Уровень заряда ячейки

    ► Сила тока, протекающего через ячейку

    ► Температура и давление О₂ в системе

    Насчет силы тока — тут есть некоторое лукавство. Ибо сила тока, протекающего через ячейку зависит от величины избыточного напряжения, приложенного к ячейке. И именно эта величина оказывает непосредственное влияние на интенсивность протекания ЭХ процессов. Но пользователь ЗРУ задает именно значение силы тока, а автоматика подбирает нужную разность потенциалов на электродах, о которой юзер не сном ни духом. Поэтому логичнее оперировать параметром «сила тока».

    Рассмотрим эти три процесса немного подробнее
    ☀Процесс заряда ячейки (Ni⁺²→Ni⁺³)&(М → МН)

    В ходе заряда внутри Ni-MH аккумулятора происходит «перекачка» атомов водорода от ОНЭ (оксидно-никелевый электрод) к МГЭ (MH-электрод).

    В ходе разряда процессы протекают в обратном направлении.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Примечание. На картинке катод и анод определены с т.з. химии (электрохимии). Катод — электрод, на котором протекают процессы восстановления. Анод — электрод, на котором протекают процессы окисления. Если не заряжать, а разряжать ячейку, то катод и анод поменяются местами. Это вносит большую путаницу. И не у всех укладывается в головах. Поэтому электрики договорились определять катод и анод всегда «по разряду»: катод (-) и анод (+). Независимо от процесса — заряд или разряд. Оно и к лучшему.

    В этой схеме буквой «M» обозначен сплав металлов, очень хорошо растворяющий атомы водорода. То есть, водород с ними образует твердые растворы внедрения, которые тут имеют условное обозначение «МН». В нулевом приближении «М» — это интерметаллид типа LaNi₅, где лантан — металл, растворяющий водород, а никель — «матрица-носитель» и вроде как катализатор (но это не точно).

    На самом деле с составом все несколько сложнее. Вместо чистого лантана экономически выгоднее использовать смесь из 4-х лантаноидов (50-60% La + 30-40% Ce + 10-15% Nd + 1-2% Pr), которая имеет техническое название «мишметалл, обогащенный лантаном».

    До 70-80% зарядной емкости ячейки — процесс заряда (Ni⁺²→Ni⁺³)&(М → МН) является фактически единственным в системе. При этом вся подводимая энергия расходуется на протекание основного процесса и диссипацию в виде джоулева тепла.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Примечание. DoC (Depth of Charge) переводится как «глубина заряда» ячейки или аккумуляторной батареи. Определяется как отношение количества израсходованного электричества при заряде к заявленной (или реальной) емкости. К истинной глубине заряда аккумулятора имеет весьма опосредованное отношение, т.к. часть эл. энергии неизбежно тратится впустую.

    Поэтому существует принципиальная возможность сверхбыстрого заряда батарей Ni-MH токами 5-10С до половины или 2/3 емкости. При наличии эффективной системы охлаждения и термоконтроля каждой ячейке в сборке. Но о практической реализации таких проектов я не слышал. В отличии от промышленных батарей Ni-Cd.

    ☀☀ Кислородный цикл

    В химических источниках тока с ОНЭ всегда используются электролит, состоящий из воды и гидроксидов щелочных металлов (KOH, NaOH, LiOH), как по отдельности, так и сложных смесях. Вода и гидроксид-ионы ОН⁻ щелочей принимают активное участие в переносе атомов водорода между катодом и анодом как при заряде, так и при разряде ячейки. Кроме того, гидроксид-ионы обеспечивают перенос заряда во внутренней цепи гальванического элемента.

    Но наличие воды в системе создает и основные проблемы при эксплуатации ХИТ.

    Именно водой обусловлено протекание самого известного побочного процесса, имеющего место в ходе заряда любого аккумулятора с электролитом на водной основе. Это так называемый кислородный цикл.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Кислородный цикл присутствует на протяжении всего процесса заряда аккумулятора, но становится хоть как-то заметным при наборе 60-70% зарядной емкости ячейки. После ~80% кислородный цикл по интенсивности становится сравним с основным процессом заряда, представленным выше. А после 100% – главным и почти единственным в системе. Но чем больше ток заряда, тем большую конкуренцию кислородному циклу составляет процесс Ni⁺³ → Ni⁺⁴ (см. ниже).

    Кислородный цикл — это побочный процесс, причем экзотермический (идет с выделением теплоты). Не только бесполезный, но и вредный. Электроэнергия тратится впустую, превращается в тепло, а значит увеличивается температура. Обратите внимание — это не джоулево тепло. Это как бы «химическая» добавка к джоулеву теплу: суммарная теплота, выделяющаяся при протекании двух химических процессов — генерации молекул О₂ на МГЭ и их уничтожении на ОНЭ. На картинке ниже кривульки, снятые для процесса заряда 4 сабжевых ячеек током 0.5С (1.1А):

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Такие графики выдает родная программа MC3000_Monitor_V1.05. Она имеет ряд багов, которые китайцы не могут исправить уже много лет. Например, временная шкала тут сдвинута примерно на 4 мин. в меньшую сторону. Но это сейчас не важно — на качественном уровне все более-менее понятно.

    Красные кривые — температура. Хорошо заметный резкий подъем Т на заключительной стадии заряда — за счет активного протекания кислородного цикла. Следует понимать, что ячейки отличаются по емкости и находятся на немного разных стадиях завершения заряда. Для обр. №1 и №4 экстремум напряжения еще не достигнут. А для обр. №2 и №3 — уже пройден, через несколько минут произойдет остановка процесса после выполнения условия ∆V = — 3 mV. Соответственно, и температуры обр. №2 и №3 выше на несколько градусов.

    За счет протекания кислородного цикла в герметичной банке растет давление. Не столько от нагревания, сколько от недостаточной эффективности процесса «уничтожения» газообразного кислорода на катоде.

    Производители всячески борются с этим нехорошим явлением: в активную массу ОНЭ добавляют кобальт (раньше – барий), в электролит (обычно КОН) – гидроксид лития LiOH. Все эти добавки повышают перенапряжение выделения газообразного кислорода — тем самым уменьшают интенсивность его выделения, увеличивают эффективность и безопасность процесса заряда. Но полностью подавить выделение кислорода на аноде не удается. И не удастся никогда.

    Некоторые думают, что кислородный цикл и есть тот самый перезаряд аккумулятора, коего следует боятся больше всего. Ан нет.

    ☀☀☀ Переразряд на никелевом электроде Ni⁺³ → Ni⁺⁴

    К перезаряду приводит другой процесс. Он изображен на рисунке.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    О чем эта картинка? Напомню, что с точки зрения химии, в ходе заряда активная масса ОНЭ окисляется. Конкретнее – происходит дегидрогенизация (потеря водорода) гидроксида никеля (+2) по схеме: β-Ni(OH)₂ – Н → β-NiOOH. Об этом было уже рассказано выше. В гидроксиде никеля степень окисления +2, а в β-NiOOH она равна +3. То есть, в процессе заряда (окисления) ОНЭ средняя температура по больнице (зачеркнуто) усредненная степень окисления никеля плавно повышается от +2 до +3.

    После того как Ni(OH)₂ полностью превратился в β-NiOOH оксидно-никелевый электрод считается (и является) полностью заряженным. Но если продолжать процесс «заряда» ячейки, то начинает протекать процесс: β-NiOOH —> γ-NiOOH. Что такое «γ-NiOOH»? Это фаза переменного состава NiOх(OH)y, где x>1 и y<1. Другими словами, это β-NiOOH, потерявший часть водорода. Если уж совсем по-простому, то это как бы смесь β-NiOOH и высшего оксида никеля NiO₂. Не трудно определить степень окисления никеля в NiO₂. Она равна +4.

    Оксид никеля (+4) – вещество крайне неустойчивое и начинает разлагаться с выделением газообразного кислорода уже в процессе получения. Кстати, чем выше температура, тем шустрее разлагается NiO₂, а выделяющийся кислород «уничтожается» на отрицательном электроде с большей скоростью. А вот само наличие в системе газообразного кислорода, да под высоким давлением («спасибо» кислородному циклу) препятствует разложению NiO₂, а значит способствует его накоплению в активной массе ОНЭ. Величина силы тока тоже влияет на это. Чем она больше, тем быстрее идет «генерация» оксида никеля (+4), а значит выше его «концентрация» в γ-NiOOH. А значит, бОльший объем γ-NiOOH вовлекается в этот процесс.

    Это и есть так называемый «перезаряд». Бессмысленный и безусловно вредный процесс получения-разложения избыточно окисленной кислородсодержащей фазы никеля.

    Почему перезаряд бессмыслен?

    Потому что дополнительное количество электричества, влитое в ячейку в ходе перезаряда относительно невелико даже при токах 1С и выше, а исчезает эта «дополнительная емкость» прямо на глазах. Ибо NiO₂ распадается весьма резво.

    Поэтому во всех стандартах при определении разрядных характеристик щелочных аккумуляторов между окончанием заряда и началом разряда должна быть выдержана пауза не менее 1 часа. Как говорят домохозяйки – «что бы химия устаканилась». Правда, в стандартах тут же упоминается, что пауза должна быть не более 4 часов. Но это существенно только для ячеек с достаточно сильным саморазрядом: Ni-Cd, Ni-H и «обычным» Ni-MH (которые не LSD).

    Как избежать перезаряд?

    Нынешние продвинутые ЗУ часто определяют момент окончания заряда Ni-MH/Ni-Cd по критерию "- ∆V". Кратковременное снижение разности потенциалов между электродами ячейки (- ∆V) происходит где-то вблизи окончания заполнения ячейки. Но почему оно наблюдается? Какова химическая природа наблюдаемого — ∆V? Я до сих пор не знаю, ответа нигде не нашел.

    Для того, чтобы достаточно надежно поймать "- ∆V" очень желательно использовать токи не ниже 0.5С (см. следующий раздел). Но, как было отмечено выше, бОльшие токи заряда способствуют переокислению β-NiOOH до γ-NiOOH (или NiO₂) и ускорению деградации активной массы «никелевого» электрода.

    Там, где не используется "- ∆V", применят другие критерии остановки процесса заряда. Например, по разности потенциалов на электродах элемента при кратковременном снятии нагрузки (Лии-500 у датчанина). Но измеренное значение НРЦ зависит от температуры и скорости заряда (поляризация электродов, которая не может рассосаться мгновенно), что создает дополнительные головняки пользователю. Триггерное значение НРЦ производителями ЗРУ подбирается в предположении температуры 20-30°С (внутри элемента). Если заряд производится в шибко холодном помещении и на малых токах, то весьма вероятен заметный недозаряд. Но еще хуже, если все это происходит на жаре и при больших токах без принудительного охлаждение — возможно не выполнение условия остановки процесса и «бесконечный» заряд.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Но можно минимизировать глубину протекания перезаряда и при этом получить уровень заряда, весьма близкий к 100%. Самый простой и практически единственный вариант – классический «медленный» заряд по алгоритму: ток 0.1С, отсечка по времени через 14-16 часов (определено экспериментально). Реальную емкость элемента можно знать весьма приблизительно, т.к. 16 ч. — это уже с большим запасом. Да и кто из производителей будет намеренно занижать емкость?;)

    Идея проста: за первые 7-8 часов элемент набирает 70-80% номинальной емкости. Потом начинает заметно протекать кислородный цикл, который чем дальше, тем больше пожирает подводимое электричество. Тем не менее, элемент за оставшиеся 6-8 час. неспешно добирает оставшуюся емкость до фактической максимальной. При этом переразряд на никелевом электроде Ni⁺³ → Ni⁺⁴ ничтожно мал и его можно не учитывать.

    6. Циклирование

    Как провести циклирование Ni-MH «правильно по ГОСТу» и почему в домашних условиях с этим никто не связывается? Я это уже объяснял в одном из обзоров, поэтому спрячу под спойлер. Если кто не в курсе — можете ознакомиться.

    Циклирование с глубиной разряда 60% и отсечками по времени
    В спецификациях вендоров речь идет о циклировании с глубиной разряда 60% по хитрой методике, изложенной в ГОСТ Р МЭК 61951-2-2007 (перевод рекомендаций МЭК на великий и могучий). В более свежем ГОСТ Р МЭК 61951-2-2019 чуть изменили вид таблички, но суть методики осталась неизменной:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Проблема в том, что в бытовых ЗРУ (зарядно-разрядных устройствах) нигде не реализован режим циклирования по фиксированным временным интервалам заряда и разряда. В т.ч. и у SkyRC. В принципе ГОСТовскую методу можно осуществить на той же MC3000, но это будет муторно, т.к. наполовину в ручную. Сделать ограничение на процедуры заряда и разряда по 140 мин. И запускать их поочередно.

    ===============================

    Для «обычных» Ni-MH норма – это 300-400-500 циклов до 80% SoH (остаточная емкость). У первых белых Энелупов было заявлено 1000 циклов. Сейчас – вроде как 2100.

    ===============================

    Важно!

    Потери емкости аккумуляторов очень сильно зависят от глубины циклирования.

    Интересны результаты, полученные для никель-водородных элементов Ni-H₂. Так, если в методике МЭК глубину разряда уменьшить до 40%, то Ni-H₂ выдерживают 30-40 тыс. циклов до потери емкости на 20% (80% SoH).

    А если глубину разряда увеличить до 80%, то для Ni-H₂ граница 80% SoH может быть пройдена уже после 1.5 тыс. циклов [Коровин, стр. 507]. Почувствуйте разницу: 1.5 тыс. и 40 тыс.! Понятно, что при глубине разряда 100%, ситуация еще более усугубится и число циклов сократится.

    Есть мнение [Коровин, стр. 463], что для ячеек Ni-Cd срок службы тоже существенно зависит от глубины разряда. Правда, не так фатально, как для Ni-H₂. Он уменьшается примерно в 10 раз при изменении глубины разряда от 10 до 70%. У Тагановой (стр.86) даже приводится картинка-схема из внутреннего исследования корпорации SAFT:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Книжки Коровина и Тагановой можно качнуть из моего облака

    cloud.mail.ru/public/C3EM/oGpizVS9N

    03. Таганова

    04. Коровин

    6.1. Циклирование 0.5С-0.2С

    Алгоритм:

    — заряд током 0.5С, критерий окончания ∆V = — 3 mV

    — пауза 30 мин.

    — разряд током 0.2С до напряжения 1.00В (определение емкости)

    — пауза 10 мин.

    Это приблизительно 3 цикла за сутки.

    Запланировано выполнение 50 циклов.

    Почему заряд током 0.5С ?
    В MC3000 основным способом определения момента прекращения заряда Ni-MH и Ni-Cd является критерий "- ∆V". Пропуск «дельты» для аккумулятора ничем хорошим не светит. Есть интересное исследование у датчанина HKJ, посвященное известным ныне способам определения момента прекращения заряда для Ni-MH.

    Там есть раздел A close look at -dv/dt termination. Автор проводил эксперименты с белым Энелупом АА 2000mAh на предмет величины ∆V в зависимости от тока заряда и сделал общее заключение:

    Вывод из вышесказанного должен заключаться в том, чтобы никогда не использовать низкий ток на зарядном устройстве с -dv/dt.

    Общая рекомендация — никогда не опускаться ниже 0,3C, что будет 0,6А для этой ячейки (2000mAh).

    Это выглядит достаточно разумно, но я предпочту 0,5C или 1A, у него гораздо лучший сигнал завершения.

    При этом напряжометр, встроенный в ЗРУ должен надежно ловить дельты порядка милливольта. А напряжометр MC3000 неплохой. Пропуски даже ∆V = — 3 mV случаются крайне редко.

    После 50 циклов (около 17 суток) была проведена процедура «Break_in» еще раз.***

    ***Примечание. Зачем это было сделано? Ни о каком «восстановлении емкости» речи не идет. В данном случае «Break_in» — исключительно с целью определения текущей емкости и энергозапаса по ГОСТу после циклирования.

    В результате имеем:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Краткое обсуждение.

    ► Несмотря на то, что определение емкости (энергозапаса) в данном циклировании и в процедуре «Break_in» было проведено единообразно (разряд током 0.2С до напряжения 1.00В), «ГОСТовские» значения всегда несколько больше тех, которые были получены в циклах. Причин для этого ровно три:

    — разные скорости заряда (токи 0.1С и 0.5С)

    — разные критерии определения момента окончания заряда (16 час. и ∆V = — 3 mV)

    — разное состояние ячеек перед началом разряда После сверхмедленного заряда током 0.1С и паузы 60 мин. состояние ближе равновесному, чем после заряда током 0.5С и паузы 30 мин. Увеличивать паузу с 30 мин. до 60 мин. — мертвому припарка. Там нужны многие часы (см. мои предыдущие обзоры). Да и смысла в этом нет никакого, т.к.циклирование проводится не с целью замерить емкость ячейки N раз подряд, а для оценки ее устойчивости к такого рода нагрузкам. Кстати, по ГОСТам паузы между окончанием заряда и началом разряда на 50 циклах не предусмотрены. Я их добавил для подстраховки, ввиду отсутствия желания преднамеренно гробить испытуемых.

    ► Что же показали измерения «Break_in» до циклирования и после?

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Обр.№1 — солнышко, ведет себя подобно Энелупу. Ибо «дельты» по мА*ч и мВт*ч — просто смешные и, скорее всего, меньше погрешности расчета этих величин по алгоритму, зашитому в МС3000.

    «Дельты» для остальных образцов больше на порядок и доходят до 4% относительной разности величин. Много это или мало? Как по мне — много. 50 циклов с током разряда 0.2С — это смешная нагрузка. Но посмотрим, что произойдет при циклировании на бОльших токах.

    ► Сильнее всего удивляют кривые [мВт*ч — циклы] для обр. №2 и №4. Рационального объяснения такого поведения я не нахожу. Было предположение о том, что «гуляет» Т в комнате. Но, не клеится. №1 и №4 — во внешних слотах ЗРУ, а №2 и №3 — во внутренних. Именно в таких парах и должны были или наблюдаться странности на кривых [мВт*ч — циклы] или отсутствовать на оных…

    И это на смешном токе разряда 0.2С!

    ► По плану далее — циклирование в режиме 0.5С-1С. Вот сижу и чешу репу — а 1С это не крутовато ли*** для хваленых «конкурентов» Энелупов?

    ***Примечание. В ряде моих предыдущих обзоров Энелупы легко проходили циклирование в режимах 2С-2С и 2.25С-2.25С. 400-550 циклов с глубиной 100% — потери по емкости 20% максимум.

    6.2. Циклирование 0.5С-0.5С

    Принял решение отказаться от разрядов током 2А (1С) и провести второе относительно «мягкое» циклирование. Пусть пока живут. Еще пригодятся.

    Алгоритм:

    — заряд током 0.5С, критерий окончания ∆V = — 3 mV

    — пауза 30 мин.

    — разряд током 0.5С до напряжения 1.00В (определение емкости)

    — пауза 30 мин.

    Это приблизительно 5 циклов за сутки.

    После 50 циклов — процедура «Break_in».

    В течении первых суток процесс мониторился родным софтом. Разгона по Т обнаружено не было. Значит, паузы были выбраны правильно.

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Внимание — анимации кликабельны.

    Первые 25 часов. АНИМАЦИЯ-2 сек/кадр
    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки
    Первые 25 часов. АНИМАЦИЯ-4 сек/кадр
    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    10 суток циклирования и в результате имеем:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    Разбор полетов.

    ► Обр. №4, сильнее всех чудивший на кривых ёмкости (энергозапаса) в предыдущем (сверхлёгком) циклировании конкретно потерял и то и другое. В процессе данного циклирования деградация была явная и ровная, без взбрыков.

    ► Обр. №1, который самый «правильный» в этой четверке, внезапно начал чудить на кривых циклирования. Что будет дальше — неведомо. Формально он остался пока «лучшим», но его отрыв от №2 заметно сократился.

    ► Обр. №3 продолжает плавно терять емкость. Сейчас остаточная ёмкость — 73% от заявленной вендором (после 100 полных циклов). Но он был изначально криво сделанным.

    ► Обр. №2 вообще непонятен. В предыдущем (сверхлёгком) циклировании чудил на кривых, и в первой половине этого терял емкость и энегозапас. Потом вдруг все стабилизировалось, выровнялось, и по ёмкости-энергозапасу он немного не догнал №1. Но надолго ли?

    Многим известно, что единственно вменяемым (доведенными до ума) Ni-MH аккумуляторами были и остаются Энелупы. Белые — оптимум, голубые (лайт) еще более стабильны, но пришлось пожертвовать частью емкости. Черные — галимый маркетинг, но если не использовать шибко долго-часто, то тоже попрут. Эти моменты я объяснял ТУТ.

    Примеры того, как выглядит циклирование Энелупов на фоне китайщины

    1. 200 циклов 2А-2А в фомфакторе ААА. Синие и голубые значки — 2 экземпляра белых Энелупов ААА. Для них это режим 2.5С-2.5С. Картинка из ЭТОГО обзора:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    PKCELL там тоже фигурируют — коричневые кривые (PK3 и PK4). Обратите внимание, насколько сильно отличаются кривые циклирования для двух образцов из одного блистера.

    2. 550 циклов 1А-1А в фомфакторе ААА. Синие и зеленые значки — 2 экземпляра голубых Энелуп Лайт ААА (550 мАч). Для них это режим 1.8С-1.8С. Две кривые ниже — LADDA, тоже лайтовая версия (500 мАч). Для LADDA это режим 2С-2С. Не исключено, что сверхпопулярные аккумуляторы LADDA выпускались на линиях Панасоника по производству Энелупов, расположенных в КНР. Картинка из ЭТОГО обзора:

    Аккумуляторы PKCELL AA 2200 mAh Ready to Use (Зеленые). 4,5 года хранения после покупки

    7. Заключение

    1. PKCELL — широко распиаренная в Рунете китайчатина неизвестного происхождения. Обычная, ничем не примечательная. Но бывает и хуже.

    2. Даты изготовления всегда неизвестны.

    3. Ready to Use и Low Self-Discharge — тут никаким боком.

    4. Из 4 элементов:

    Один — полудохлый изначально.

    Три остальных — так себе. Чудят и заметно теряют емкость при циклировании в щадящих режимах.

    5. Любителям изрекать фразы типа «PKCELL — не хуже Энелупов, только дешевле в несколько раз». До Энелупов им — как до Луны пешком. Что и не удивительно. У тех же белых Энелупов японского производства (FDK) вообще нет конкурентов и уже никогда не будет. Фуджики не в счет, ибо это те же самые Энелупы, но с другими наклейками.

    6. Чуда как всегда не произошло. Фея-крестная в очередном запое, а Деда Мороза вообще не существует.

    Всего доброго.

    P.S. Сообщения об опечатках-ошибках пишите прямо сюда, в комменты. Спасибо за понимание.


СМОТРИ ТАКЖЕ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *