Товары из Китая

Недокументированные проблемы с ШИМ SG2525-3525


Недокументированные проблемы с ШИМ SG2525-3525

Здравствуйте коллеги и друзья!

Задача построения маломощных изолированных, DC/DC преобразователей, в условиях ограниченной (по факту наличия в отечественных магазинах) зарубежной номенклатуры и отсутствием отечественной компонентной базы, обретает особую остроту на территории б. СССР.

Тут еще могут «прилететь» дополнительные санкции от «партнеров», от которых станет еще печальнее с доступностью оной.

Что, мы имеем, на сегодня?

Всего три варианта решение проблемы:

1. Прямой путь — Покупка готовых, изолированных DC/DC преобразователей на плату, в виде герметичных компонентов или микро-плат (Китайские – доступны, но не надежны, прочие, например Mean Well качественны, но дроги).

2. Реализация изолированного DC/DC, на специализированных, дискретных элементах (например, на связке микросхема (MAX253 или SN6501DBVR) + микро-трансформатор (WE) на топологии Push-Pull или Flayback). Дорого и труднодоступно у нас.

3. Самостоятельный поиск решения из доступных дискретных элементов, с самостоятельным проектированием и изготовлением ТГР (либо как под вариант оного — заказ ТГР «на стороне» по собственному проекту).

Как инженер, стремящийся к объективному взгляду на принятие решений первый и второй путь, не отвергаю, но принял решение идти третьим путем. Тем более что вопросы проектирования таких специфичных узлов электронных схем в русскоязычной литературе озвучен не достаточно полно. А чтобы иметь цельный взгляд на оптимальные пути решения надо уделить, внимание и приложить некоторые усилие для самостоятельного изучения этого вопроса.

И так по части второго варианта, у микросхемы SN6501DBVR появился улучшенный китайский собрат – SCM1201A, с такой же типовой реализацией изолированного DC/DC преобразователя:

Недокументированные проблемы с ШИМ SG2525-3525

Которая значительно дешевле американских аналогов, но также труднодоступна для покупки у нас.

Как видим данная схема реализована довольно компактно и элегантно. Типичный Push–Pull. Подобные схемы, я встречал и раньше от той же разрекламированной SN6501DBVR, но до меня не доходило, почему выбор топологии идет в пользу двухтактной схемы, а не однотактной обратноходовой, которая так популярна в маломощных преобразователях?

К тому же, выбор ШИМ контроллеров для низковольтных отдотактных преобразователей очень велик и цены очень доступны?

Ответ получил, когда увидел снимок микро-трансформатора такого преобразователя (WE 750316030):

Недокументированные проблемы с ШИМ SG2525-3525

Этот трансформатор для преобразователя 5/3,3V, на частоту 400kHz.

Обратите внимание на число витков… их всего 7штук!

И намотано это чудо, на крохотное колечко размером 6.3х3.8х2.5 (размеры восстановлены по снимкам).

Меня, этот образец очень заинтриговал.

Ведь такой ТГР намотать легко! А если взять колечко больших размеров, с большей площадью поперечного сечения, то при тех же индукции и частоте, число витков можно еще уменьшить!

Таким образом, можно нивелировать трудоемкость процесса изготовления ТГР ручным трудом к приемлемому минимуму, при мелкосерийных сборках!!!

В обратноходовой же топологии, необходим в магнитной системе ТГР — зазор или феррит с низкой проницаемостью, что приводит к высокому числу витков обмоток.

С другой стороны, если взять трансформатор спроектированный для двухтактного преобразователя (за исключением квазирезонансных топологий — LLC ), то там напротив не нужен зазор и число витков на вольт требуется в разы меньше.

Таким образом, вырисовываются два требования к построению маломощного низковольтного изолированного DC/DC преобразователя, с технологически приемлемым ТГР:

— Топология – полумостовая или Push-Pull (стало быть и контроллер должен быть двух-тактным)

— Частота преобразований от 300kHz.

Выбор двухтактного ШИМ контроллера

В первую очередь он должен быть доступным, недорогим и желательно с наименьшей обвязкой. Во-вторых обеспечивать частоту преобразования хотябы в те же 300kHz.

В последнее время, я изучал работу промышленного блока питания Power One 13.48 SIC по высоковольтной части. Там как раз в управлении модуля ШИМа построен на, хорошо известной микросхеме SG3525. С другой стороны периодически приходится ремонтировать американские станции хлорирования воды, которые также построены на этой микросхеме.

В сети, есть достаточно много хороших, схем различных блоков питания построенных на SG3525. Эта микросхема имеет много преимуществ над аналогами:

— высокая распространенность и низкая стоимость.

— неприхотливость к разводке платы.

— небольшое число внешних компонентов для генерации сигнала.

— достаточно умощенный выходной каскад, на биполярных транзисторах, позволяющий подключить ТГР непосредственно к выходу микросхемы.

— частота генерации сигнала по разным данным от 200 до 400kHz.

А поскольку у меня под рукой была SG2525A, решено было прямо с нее и начать исследования.

Суть исследований была простейшей и состояла в том, чтобы построить минимальную схему генерации ШИМ сигнала и подключать к нему образцы различных ТГР, все это должен был питать лабороторник RD6006 с напряжением в 12V и лимитом по току в 100мА (чтобы ничего, не сжечь).

Более, того было принято решение подключать трансформатор непосредственно к выходу микросхемы, как это было реализовано в некоторых преобразователях.

Была собрана минимальная схема вида:

Недокументированные проблемы с ШИМ SG2525-3525

С помощью резистора VR1, менялась частота от 15 до 160kHz

С помощью осциллографа отслеживалась форма импульсов на вторички ТГР, а лабороторник показывал потребляемый ток системы в целом, но зная потребляемый ток схемы без ТГР, вычислить ток ХХ ТГР было легче простого…

Начал играться с малогабаритных синфазных дросселей на зеленных колечках… Отходя от темы статьи, замечу, что идея использовать синфазник в таком преобразователе вполне себе рабочая и имеющая право на практическое использование. Все-же синфазник может быть использован, как готовая конструкция двухобмоточного ТГР для преобразователя типа 1:1.

Но меня интересовал, ток намагничивания в зависимости от частоты и витков.

А в первую очередь для дальнейшей аналитики, решил зафиксировать зависимость потребляемого тока, схемы без ТГР.

И тут меня ждал обидный сюрприз…

Оказывается, что при том, частотозадающем конденсаторе в 3.3nF эта микросхема потреблеят солидную мощность на холостом ходу! От 160мВт при частоте 15kHz, до 600мВт при частоте 150kHz!

Чтобы легче было понять, что это за мощности и чем это сулит на практике приведу пример потребления микро-реле Relpol RM84-2012-35-1012. При номинальных 12V питания, имея при этом гораздо больший корпус чем корпус исследуемой микросхемы DIP-16, это реле потребляет всего 360мВт мощности и на октрытом воздухе нагревается до 40град. До какой температуры прогреется корпус DIP-16, при мощности тепло-потерь в 600мВт, я не стал выяснять. Такие потери мощности при режиме ХХ для этой микросхемы попросту неприемлемы, тем более неприемлемо строить маломощные преобразователи с такими микросхемами ибо мы автоматом получим удручающе-низкий КПД.

И так достигнув частоты в половину, необходимого минимума – 300kHz я столкнулся с непредвиденными проблемами в эксплуатации этой микросхемы. В документациях от ST, ONSemi или TI нет ни какой информации по собственному потреблению мощности – SG3525, ни графиков, ничего связанного с потребляемой мощностью.

Решил не сдаваться и исследовать, по подробнее эту микросхему на выявленную проблему.

Поскольку частота задается, не только резистором, но и конденсатором, то выдвинул тезис — что потребляемая мощность SG3525 может быть различной, в зависимости от их комбинации. В документации, есть графики подбора частотозадающего резистора от емкости частотозадающего конденсатора. Что интересно, там номиналы конденсатора предлагаются от 1 до 100nF (стр 6. от ST) у меня стоял ближе к нижнему рекомендуемому пределу — 3.3nF.

Поэтому план был таков.

1. Изменить тестовую схему следующим образом:

Недокументированные проблемы с ШИМ SG2525-3525

2. Теперь при фиксированном частотозадающем конденсаторе C2, вместо частотозадающего резистора использовать магазин сопротивлений МСР-63 (сопротивлением до 100k) покдлюченный через витую пару к выводу 6.

3. Для измерения частоты и наблюдением за выходным сигналом к выходам 11 и 14 микросхемы подключить осциллограф.

4. Запитывалось схему от лабороторника RD6006, напряжением в 12V и лимитом по току 150мА, на нем же отслеживать потребление мощности.

5. Результаты измерений задокументировать в документ Excel b аппроксимировать данные с точностью до 4%.

И так при изначальной емкости С2=3.3nF удалось добиться максимальной частоты выходного сигнала в 244kHz. Дальше происходила нестабильная генерация и прекращение работы вообще. На частоте свыше 200kHz, уже возникали небольшие искажения выходного сигнала. Потребляемая мощность достигала 890мВт! Что, катастрофически много.

Следующим шагом, я решил перепаять емкость С2 на 10nF и повторить опыт.

Результаты оказались еще более худшими чем при C2= 3.3nF. Теперь критическая частота генерации снизилась до… 140kHz при потреблении в 740мВт. Это значит, что генерацию с частотой свыше 140kHz при C2= 10.0nF для SG2525А достичь просто невозможно. Да и для частоты в 100kHz потери всеже не малые – 510мВт. Вывод – увеличение емкости C2, приводит к увеличение мощности потребления микросхемы, причем нелинейному но об этом ниже.

Следующим шагом было снижение С2 до 1.0nF.

В этом случае вывод подтвердился, потребляемая мощность снизилась, и при тех же 100kHz составила 370мВт против 510мВт при C2= 10.0nF. Однако выйти на генерацию 300kHz не удалось, критическая частота составила 275kHz при потреблении мощности 870мВт.

Снизил еще на порядок С2 до 100pF.

Потребляемая мощность еще снизилась, теперь при 100kHz она составляет 340мВт против 510мВт при C2= 10.0nF. Получилось выйти на генерацию в 400kHz (и можно было «крутануть» повыше). Но, на этой частоте потребление мощности составило безумных 1210мВт! Потому, чтобы не спалить микросхему опыт был остановлен на 400kHz.

Чтобы оценить порядок нелинейности этих потерь, табличные данные были аппроксимированы и получены следующие выражения:

Недокументированные проблемы с ШИМ SG2525-3525

Из которых следует, что при фиксированной емкости C2, потери мощности растут пропорционально степени 1.12.

Графически результаты опытов выглядят так:

Недокументированные проблемы с ШИМ SG2525-3525

Этих графиков очень не хватает в даташитах к микросхеме SG2525A от ST.

Хоть эти исследования и ставят крест на идеи использовать микросхему SG2525A на высокочастотных проектах. Но, не все так однозначно в целом с микросхемами серии SGx52x. У меня на руках естьмодуль управления LLC преобразователя от блока питания Power One 13.48 SIC, который построен на микросхеме IP3P125, которая в свою очередь является полным pin-to-pin аналогом SG3525ADWR2G в корпусе SOIC-16.

Так вот, этот модуль в сборе с двумя ТГРами с кучей компонентов, на частоте в 350kHz, на холостом ходу потребляет всего 270мВт!

Поэтому я решил исследовать микросхемы и других типов этой серии, на предмет энергетики при ХХ. К сожалению получилось, приобрести только SG3525A от того же ST в корпусахDIP-16 и SO-16, хотелось бы приобрести SG3525ADWR2G в корпусе SOIC-16 от ONSemi. Но надо заказывать в Харькове или Днепропетровске, но там минимум надо брать на 200грн + платить оплату через банк, + доставка.., короче не стал сорить деньгами (как-то повезет раздобыть и ее, то исследую).

И подверг их тем же исследованиям, только пир частотозадающем С2=1.0nF.

Результаты оказались, совершенно различными, для всех этих микросхем:

Недокументированные проблемы с ШИМ SG2525-3525

Результаты всех измерений тут.

Подведем важные итоги по результатам исследования энергопотребления:

1. Конфигурировать частоту работы этого ШИМ контроллера, целесообразно, на как можно низких емкостях частотозадающего конденсатора. И хотя во всех документах указывается минимальная емкость в 1.0nF, опыты показали еще более лучшую работоспособность на емкостях в 100 и 470pf. На худой конец, если не желаете ставить емкость ниже рекомендуемой даташитом, то ставьте самую низкую емкость по документу в 1.0nF. Это обеспечить минимум собственного потребления мощности.

2. Основным потребителем этой мощности является внутренние транзисторы выходных каскадов, на которых оседает до 70% потерь мощности этой микросхемы. Возможно у производителя от ST эти транзисторы дешманские.

3. Несмотря на то, что по документам SG2525 и SG3525, как-бы одинаковые микросхемы, но разница потерь мощности для исполнения в DIP-16 корпусов достигает 40%, в пользу SG3525AN!

4. Пока из массово доступных, наилучшим образом себя показала микросхема SG3525AN, на которой можно собрать преобразователь с частотой преобразования до 150kHz. Для более высоких частот, нужны другие контроллеры. Хорошо бы для этого использовать IP3P125, но она не продается вообще, по крайней мере, факт ее продажи «на гуглить» не смог. Точку смогу поставить, исследуя SG3525ADWR2G в корпусе SOIC-16.

На этом, пожалуй, все! Всем удачи и хорошего настроения.


СМОТРИ ТАКЖЕ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *