Товары из Китая

Расчёт и проверка настройки фазоинвертора для акустической системы.


Расчёт и проверка настройки фазоинвертора для акустической системы.

Проверка настройки фазоинвертора на примере нескольких АС.

Рассчитано на широкий круг радиолюбителей.

Если АС уже построена, можно сразу переходить к пункту 5.

1. Что такое фазоинвертор. Немного копипаста.

«Фазоинвертор (ФИ) представляет собой щель или трубу, находящуюся в корпусе звуковой системы. За счет резонанса этой трубы обеспечивается расширение низкочастотного диапазона. С конструктивной точки зрения фазоинвертор – это закрытый, но не полностью герметичный ящик.

Расчёт и проверка настройки фазоинвертора для акустической системы.

Принцип работы фазоинвертора

Суть работы данного устройства заключается в том, что при помощи акустического резонатора осуществляется переворот (инверсия) фазы звуковой волны, исходящей от тыльной части диффузора. На выходе фазоинвертора эта уже инверсированная волна суммируется с волной, излучаемой фронтальной поверхностью диффузора. Это существенно увеличивает на частоте настройки прибора уровень звукового давления.

Достоинства и недостатки ФИ

Преимущества этого вида акустического оформления известны достаточно хорошо. Приблизительно 90% производимых в мире современных акустических систем оснащены фазоинвертором. Нижняя граница частоты в таких системах в 1,26 раза меньше, чем в закрытых аналогах (при одинаковых размерах корпуса и КПД).

Если взять акустику с одинаковыми габаритами и показателями нижней границы частоты, то системы с фазоинвертором будут обладать большим на 3 дБ КПД. И наконец, при одинаковых значениях нижней границы частоты и КПД, габариты такой системы будут значительно меньше.

К недостаткам фазоинвертора можно отнести невысокие переходные характеристики (по сравнению с системами закрытого типа) и более сложный процесс согласования усилителя с акустической системой. То есть длительность затухания и время нарастания звукового сигнала определяются лишь качеством исполнения самого фазоинвертора. На практике это проявляется в глухом звуке литавр, «бухающем» звучании барабана, размытости щипка при воспроизведении музыки от струнных инструментов и пр.

Стоит отметить, что достоинства существенно перевешивают вышеупомянутые недостатки. Поэтому большинство компаний, специализирующихся на производстве звукового оборудования, внедряют в свои модели данное устройство.

Простому меломану – пользователю акустических систем достаточно знать про фазоинвертор несколько простых, но очень важных вещей. В комнате площадью меньше 12 метров нельзя устанавливать колонки с фазоинвертором расположенным в задней части – получите отвратительное буханье вместо музыки. Для небольших помещений лучше выбирать колонки с передним расположением фазоинвертора или вовсе без него. Если ваши колонки оснащены фазоинвертором, и вам кажется, что бас «бубнит» — попробуйте заткнуть отверстие фазоинвертора любой плотной тряпкой – иногда это помогает.» ©

2. Прежде, чем браться за расчёт ФИ, необходимо измерить параметры Т/С для НЧ динамика.

Не вижу смысла повторяться или копировать всё в данный обзор.

Исчерпывающее описание — Как измерить параметры Тиля-Смолла динамиков с помощью ПК и выбрать для них правильный корпус.

Расчёт и проверка настройки фазоинвертора для акустической системы.

Выбор размеров ФИ (ссылка на источник).

Много текста. Спрятано под спойлер.
Закономерным финалом саги о фазоинверторе будут практические аспекты его воплощения в жизнь. Ключевым элементом здесь становится именно труба, она же — тоннель, она же в результате рабской транслитерации с английского — порт. Именно она, труба, позволит реализовать на практике два главных параметра, определяющие акустический облик задуманного фазоинвертора: объём корпуса и частота его настройки. Эти две величины, одна в литрах, вторая — в герцах, становятся результатом либо самостоятельного расчёта, либо следования ранее сделанным калькуляциям. Их источником могут быть изготовители динамика, наши тесты или же советы специалистов, основанные на их практике. Во всех трёх случаях бывает, что даются готовые размеры тоннеля, обеспечивающие настройку известного объёма на нужную частоту, но, во-первых, не каждый раз, а во-вторых, слепое копирование не всегда возможно и всегда непохвально. Так что более общей и гораздо более продуктивной будет такая постановка задачи: известны объём и частота, а вопрос об их физической, в материале, реализации станем решать самодеятельно. Часть истории будет организована по принципу вопросов и ответов: номенклатура вопросов известна, в редакционной почте они повторяются с регулярностью, дающей повод для статистических выкладок, которые так любит наш тестовый департамент. Не стану отнимать у них любимую игрушку, у нас — свои. Итак, что вначале, рассчитываем тоннель или покупаем трубу, которой этим тоннелем предстоит стать? По идее надо вначале купить — трубы бывают не любого диаметра, а из некоторого ряда значений, если брать готовые, а не накручивать самому из бумаги на клею, как пионер из кружка юного космонавта. Но начать придётся всё же с хотя бы грубой прикидки, и дело здесь в том, что…

Толщина имеет значение

Если тоннель действительно труба (есть ведь и варианты), какой она должна быть в диаметре? Самый общий и самый грубый ответ: чем больше, тем лучше. Совет действительно радикален и может вызвать протестную реакцию: а если я возьму и сделаю тоннель диаметром вдвое больше динамика? Не возьмете и не сделаете, как бы ни старались, об этом больше ста лет назад позаботился некто Герман Гельмгольц, резонатором имени которого фазоинвертор и является, а позже — создатели автомобилей, сделавшие их по габаритам меньше существовавших в то время паровозов. Итак, по порядку, почему больше и почему что-то этот процесс остановит.

Во время работы вблизи частоты настройки, где, собственно, и выполняет свои функции тоннель фазоинвертора, добавляя от себя к звуковым волнам, порождаемым колебаниями диффузора, внутри тоннеля движется воздух. Движется колебательно, туда-сюда. Объём движущегося воздуха — точно такой же, какой во время каждого колебания приводится в движение диффузором, он равен произведению площади диффузора на его ход. Для тоннеля этот объём — произведение площади сечения на ход воздуха внутри тоннеля. Площадь сечения реально всегда меньше площади диффузора (если кто ещё не отказался от угрозы сделать такой же, а то и больше, скоро никуда не денутся и откажутся), и, чтобы переместить такой же объём, воздуху надо двигаться быстрее, скорость в тоннеле с уменьшением диаметра возрастает пропорционально уменьшению площади его сечения. Чем это плохо? Всем сразу. Прежде всего тем, что модель резонатора Гельмгольца, на которой всё основано, предполагает, что потери энергии на трение воздуха о стенки тоннеля отсутствует. Это, разумеется, идеальный случай, но чем дальше мы от него отойдём, тем меньше работа фазоинвертора будет походить на то, чего мы от него ожидаем. А потери на трение в тоннеле тем выше, чем больше скорость воздуха внутри. Теоретически формула, да и несложная программа, на ней основанная, этих потерь не учитывает и безропотно выдаст вам расчётную длину тоннеля при диаметре хоть в палец, но работать такой фазоинвертор не будет, всё умрёт в завихрениях воздуха, пытающегося стремительно летать по тесному тоннелю взад-вперёд. Текст когда-то виденного мной агитационного плаката ГАИ «Скорость это смерть» к движению воздуха в тоннеле подходит безусловно, если смерть отнести к эффективности фазоинвертора.

Впрочем, намного раньше, чем фазик погибнет как средство звуковоспроизведения, он станет источником звуков, для которых не предназначен, вихри, возникающие при излишне высокой скорости движения воздуха, создадут струйные шумы, нарушающие гармонию басовых звуков самым бессовестным и неэстетичным образом.

Что следует принять за минимальное значение площади сечения тоннеля? В разных источниках вы найдёте разные рекомендации, далеко не все из них авторами были когда-либо опробованы хотя бы путём вычислительного эксперимента, о других уж не говорим. Как правило, в такие рекомендации закладываются две величины: диаметр диффузора и максимальная величина его хода, то самое Xmax. Это разумно и логично, но в полной мере относится лишь к работе сабвуфера на предельном режиме, когда о качестве звучания говорить уже немного поздно. Основываясь на многочисленных практических наблюдениях, можно взять на вооружение куда более простое правило, оно небезупречно и не совсем универсально, но работает: для 8-дюймовой головки тоннель должен быть не меньше 5 см в диаметре, для 10-дюймовой —

7 см, для 12-ти и больше — 10 см. Можно ли больше? Даже нужно, но вот именно сейчас нас кое-что остановит. А именно — длина тоннеля. Дело в том, что…

Длина имеет значение

Как и было сказано, её скомандует великий Герман фон Гельмгольц. Вот он, у доски в Гейдельбергском университете, а на доске — та самая формула. Ну ладно, в этот раз её написал я, но придумал — он и написал бы точно так же. Эта немудрёная, поскольку выведена для идеального случая, зависимость показывает, какова будет частота резонанса некоей полости (нам привычнее ящик, хотя Герман фон делал эдакие пузыри с трубами-хвостиками) в зависимости от объёма V, длины L и площади сечения хвостика. Обратите внимание: параметров динамика здесь нет, и было бы странно, если бы они были. В любом случае полезно запомнить и никогда не поддаваться на провокации: настройка фазоинвертора полностью и исчерпывающе определяется размерами ящика и характеристиками тоннеля, соединяющего этот ящик с окружающей средой. Помимо этого в формулу входят только скорость звука в атмосфере планеты Земля, обозначенная «с», и число «пи», не зависящее даже от планеты.

Для практических целей, а именно — вычисления длины тоннеля по известным данным, формулу легко преобразовать, вспомнив родную школу, а константы подставить в виде чисел. Это делали многие. Многие же публиковали результаты этого волнующего процесса, и автору немного удивительно, как можно было зрелищно обделаться при операции с тремя-четырьмя числами. В общем, треть опубликованных на бумаге и в Сети преобразованных формул непостижимым образом являются ахинеей. Правильная приводится здесь, если подставлять величины в показанных чёрным единицах.

Эта же формула плюс некоторые поправки заложена и во все известные программы по расчёту фазоинверторов, но прямо сейчас формула для нас удобнее, всё на виду. Смотрите: что будет, если вместо минималистского тоннеля поставить другой, попросторнее (и потому получше)? Потребная длина возрастёт пропорционально квадрату диаметра (или пропорционально площади, но ведь мы трубу-то собрались по диаметру покупать, по-другому не продают). Перешли от 5-сантиметровой трубы к 7-сантиметровой, это к примеру, длина при той же настройке понадобится вдвое больше. Перешли на 10 см — вчетверо. Беда? Пока — полбеды. Дело в том, что…

Калибр имеет значение

Беда сейчас будет. Ещё раз глядим на формулу, на этот раз — в знаменатель, фокусируйте зрение. При всех прочих равных длина тоннеля будет тем больше, чем меньше объём ящика. Если для того, чтобы настроить на 30 Гц 100-литровый объём, имея в распоряжении 100-миллиметровую сантехническую трубу, надо открыжить и вклеить в ящик отрезок говнопровода протяжённостью 25 сантиметров, то при объёме ящика 50 л это будет полметра (что уже не меньше, чем полбеды), и при довольно распространённых 25 л тоннель такой толщины должен будет иметь метровую длину. Это уже беда, без вариантов.

В наших, практических условиях объём ящика в первую очередь определяется параметрами динамика, и в силу причин, читателям этой серии уже хорошо известных, для головок калибра 8 дюймов оптимальный объём редко превышает 20 л, для «десяток» — 30 — 40, лишь когда дело доходит до 12-дюймового калибра, мы начинаем иметь дело с объёмами порядка 50 — 60 л, и то не всегда.

Вот и получается какой-то парад суверенитетов: частота настройки ФИ определяется тем басом, который мы от него хотим получить, будь он на «восьмёрке» или на «пятнашке» — не важно. А частота настройки ящика опять не зависит от динамика, чем меньше объём, тем длиннее подавай тоннель. Итог парада: как мы неоднократно замечали в тестах малокалиберных сабвуферов, желательный и многообещающий вариант оформления в ФИ физически невозможно (или затруднительно) реализовать. Даже если не жалко места в багажнике, нельзя объём ящика ФИ делать больше оптимального, а оптимальный нередко оказывается настолько мал, что настроить его на инвариантную к прочим факторам частоту 30 — 40 Гц немыслимо. Вот пример из недавнего теста 10-дюймовых сабвуферных головок («А3» №11/2006): если взять за аксиому диаметр трубы 7 см, то для того, чтобы сделать фазоинвертор на головке Boston, понадобился бы её кусок длиной 50 см, для Rainbow — 70 см, А для Rockford Fosgate и Lightning Audio — около метра. Сравните с рекомендациями в тесте этого номера, относящимися к 15-дюймовым головкам: ни у одной таких проблем не отмечено. Почему? Не из-за динамика, как такового, а из-за исходного объёма, выбранного по параметрам динамика. Что делать? Встречать беду во всеоружии. Оружие нам выковали поколения специалистов (и не только). Знаете, в чём тут дело?

Форма имеет значение

Вы едва ли могли не заметить: я очень люблю копаться в патентах, поскольку считаю, пусть дорога от изобретения к реальной жизни не столь уж коротка, патент — отражение мысли в виде вектора, то есть — с учётом направления. Большинство новаций, предложенных (и неуклонно предлагаемых) неутомимыми умами в отношении фазоинвертора, сконцентрировано на борьбе с двумя мешающими факторами: длина тоннеля, когда его сечение велико, и струйные шумы, когда его сечение, стремясь сократить длину, попытались уменьшить. Первое, простейшее решение, о допустимости которого нас спрашивают в редакционной почте раз по пять в месяц: можно ли тоннель поместить не внутрь ящика, а снаружи? Вот ответ, окончательный, фактический и настоящий, как бумага на квартиру профессора Преображенского: можно. Хоть частично, хоть целиком, внутрь ящика тоннель запихнули исключительно из эстетических соображений, у фон Гельмгольца он торчал снаружи, и ничего, он это пережил. Да и современность наша даёт примеры: вот, скажем, ветераны car audio не могут не помнить (многие, честно говоря, не могут забыть) «басовые трубы» фирмы SAS Bazooka. Они ведь начались с патента на сабвуфер, который удобно поместить за сиденьем грузовика — любимого транспорта американцев. Для этого изобретатель протянул трубу фазоинвертора вдоль корпуса снаружи, заодно уж придав её распластанную по поверхности цилиндрического корпуса форму. Это — один пример, есть другой: некоторые фирмы, выпускающие встроенные сабвуферы для домашних кинотеатров, выводят наружу трубу-тоннель полосового сабвуфера-бандпасса. Тип сабвуфера в данном случае значения не имеет: это тот же резонатор имени сами знаете кого. Ещё одно решение тоже, судя по письмам, ищут, но опасаются. «Можно ли гнуть тоннель?» Ответ — в стиле Филиппа Филипповича и очевиден. Иначе не выпускали бы сразу несколько компаний (DLS, JL Audio, Autoleads, etc. etc.) гибкие трубы специально для этой цели. А в области патентной документации есть даже интересная подсказка, как можно эту задачу решить не без изящества и материальной экономии: была в своё время предложена конструкция модельного тоннеля, который бы собирался из типовых элементов в любой желаемой форме, иллюстрация поведает об остальном. От себя добавлю: большая часть изображённых в патенте деталей трогательно напоминает номенклатуру элементов канализационных сетей местного значения, что и является практическим рецептом внедрения интеллектуального эксцесса американского изобретателя.

Борясь с неуместной длиной тоннеля, часто идут по пути строительства так называемых «щелевых портов», их достоинство — в конструктивной интеграции с корпусом, что позволяет, при известном воображении, сделать тоннель довольно протяжённым, на прилагаемой схеме — сразу несколько вариантов, которым вопрос, разумеется, далеко не исчерпывается (три верхних эскиза принадлежат перу известного хай-эндщика Александра Клячина, остальное было делом техники).

Недостаток же щелей — в трудности подгонки длины, это не сантехнический ПВХ — махнул пилой, и дело в шляпе. Но есть решения и здесь: не так давно один из героев рубрики «Своя игра» пермяк Александр Султанбеков (не грех лишний раз напомнить стране имена её героев) продемонстрировал на практике, как можно настраивать щелевой порт, изменяя его сечение при неизменной длине, он это делал, укладывая внутрь фанерные проставки, как показано на фото где-то поблизости, поищите.

В сворачивании тоннеля фазоинвертора некоторые светлые умы дошли до крайностей: один светлый предложил, например, свернуть тоннель в виде спирали вокруг цилиндрического корпуса громкоговорителя, другой на хитрую формулу Гельмгольца ответил тоннелем-винтом, такая концепция нам здесь, в России, знакома…

Но вообще-то все эти решения (даже с винтом) — лобовые, здесь тоннель неизменной длины просто приделывается или складывается так, чтобы не мешал. Известны (и даже продаются в товарных количествах) реализации другого принципа. Здесь дело вот в чём.

Сечение имеет значение

Не площадь, как таковая, а характер её изменения по длине тоннеля. До сих пор мы, ведомые учением фон Гельмгольца в его самой простой, школьной форме, считали непременным, что поперечное сечение тоннеля постоянно. А нашлись люди, которые это условие нарушили и даже нажили на этом денег.

Уход от цилиндра как формы тоннеля предлагали очень и очень многие. Кто — в стиле Матарацци с вариациями, кто — в скромном, локальном масштабе, ограничиваясь приданием криволинейных обводов концам цилиндрического тоннеля с целью снижения струйных шумов от завихрений. Наиболее же радикальное средство борьбы и с длиной, и с шумами не только придумал, но и эксклюзивно пользуется им уже не один год Мэттью Полк, основатель компании своего имени. Суть устройства под названием PowerPort такова: часть функций тоннеля берёт на себя одна или две, на каждом конце трубы, кольцевая щель между стенкой ящика и поставленным на строго рассчитанном расстоянии от неё «грибком», впрочем, на рисунке всё видно. Такими тоннелями снабжаются практически все домашние громкоговорители Polk Audio. И ежели только кто покусится, плакали его 32 цента плюс ещё кое-что. Для себя же, любимых, никто не запретит такую штуку попробовать, тем более что когда-то давно Полк выложил на свой корпоративный сайт таблицу в «Экселе»…

Расчёт и проверка настройки фазоинвертора для акустической системы.

К вопросу о толщине: проталкивая тот же объём воздуха через более тесный тоннель, его придётся разгонять до более высокой скорости. А «скорость — это смерть»

Расчёт и проверка настройки фазоинвертора для акустической системы.

Гельмгольц написал бы свою формулу точно так же, просто в тот момент не было фотографа.

Расчёт и проверка настройки фазоинвертора для акустической системы.

©

Надеюсь, я окончательно всех запутал.

Понимаю. Старался изо всех сил. )))

Процесс постройки АС с ФИ я, пожалуй, пропущу.

Тут хватит на дюжину обзоров с выбором динамиков, материалов для корпуса, столяркой, сборкой и т.д.

3. Формулы, которые понадобятся.

Формула определения резонансной частоты динамика одинаковая и для ЗЯ, и для ФИ:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Лично мне хватает расчёта ФИ и ЗЯ в программе JBL Speakershop.

"… Ни в какой программе не выскочит окно с надписью — парень, я, конечно, всё посчитаю, как ты хочешь, но ты делаешь дурь, и звук будет отстойный." ©

Поэтому будет полезно проверить предлагаемые размеры ФИ и корпуса самостоятельно сторонними расчётами.

Например, онлайн расчёт ФИ.

4. Во время написания обзора мне попался материал

Сабвуфер с фазоинвертором: расчёт, настройка, типичные ошибки,

в котором автор весьма эмоционально рассказывает о недостатках акустического оформления типа ФИ.

Если вы по-прежнему хотите построить саб или АС с фазоинвертором, материал рекомендуется к прочтению.

5. Проверка настройки ФИ.

За основу взята методика, предложенная по ссылке:

измерение модуля полного электрического сопротивления Z акустической системы.

Какой должна быть частота настройки (резонанса) фазоинвертора?

Частота резонанса фазоинвертора (в общем случае) должна быть на 2/3 октавы ниже, чем частота резонанса того же динамика в том же ящике при закрытом отверстии ФИ.

Например:

Fc динамика в ЗЯ = 60 Гц, тогда частота настройки ФИ д.б. 60/1,5874 = 60*0,63 = 37,8 (Гц)

Обратите внимание на появление цифры 0,63 — это и есть «на 2/3 октавы ниже».

Расчёт и проверка настройки фазоинвертора для акустической системы.

Исходная схема подключения НЧ динамика (или АС с ФИ):

Расчёт и проверка настройки фазоинвертора для акустической системы.

Пояснения (изменения в схеме):

— рекомендуется использовать усилитель, обеспечивающий минимум 7,1 В RMS (10 В ампл.)

— в качестве источника сигнала для усилителя — программный генератор в SpectraLab

— вместо вольтметра — линейный вход звуковой карты ПК (подключить к динамику!).

Таким образом, из дополнительного оборудования потребуется всего лишь резистор на 1 кОм.

Общий порядок действий:

— собрать проверочную схему с учётом пояснений выше

— установить уровень вых. сигнала в микшере системы 50-70 %

— установить регулятор громкости на усилителе, чтобы выходное напряжение было 7,1..10 В RMS без клиппинга

— выбрать свип-тон в настройках программного генератора (диапазон 20-200 Гц, если требуется проверить ФИ, или 20-20к Гц для всего диапазона АС)

— нажать кнопку «поехали» )))

Если всё сделано правильно, получится вот такая картинка:

Расчёт и проверка настройки фазоинвертора для акустической системы.

6. Проверка настройки ФИ сабвуфера 11,8л.

Расчёт в JBL Speakershop:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Размеры ФИ: ф50х150мм

Проверка расчётов (онлайн калькулятор):

Расчёт и проверка настройки фазоинвертора для акустической системы.

По рекомендациям Т/С для размеров ФИ, полученных в JBL, частота настройки ФИ составляет 57,7 Гц.

По рекомендациям Виноградовой для тех же размеров ФИ получается частота 52 Гц.

Расчёт частоты Fc динамика FD115-7 в ЗЯ 11,8л (это не ошибка, считаем для ЗЯ; см. формулу в пункте 4 ):

Fc = 67,5 * sqrt ( 1+ 2,66/11,8 ) = 74,7 (Гц)

Далее собирается схема из п.5.

Результат: модуль полного электрического сопротивления саба:

Расчёт и проверка настройки фазоинвертора для акустической системы.

график оранжевым цветом — саб 11,8л с открытым ФИ

график фиолетовым цветом — саб 11,8л с закрытым ФИ (ЗЯ 11,8л)

Разница частот двух пиков — 2-3 Гц — показатель неправильного расположения ФИ в корпусе:

срез трубы ФИ находится в непосредственной близости от тыльной стороны динамика.

Выводы:

— частота настройки ФИ — около 48 Гц, что ближе к расчётному значению по Виноградовой

— частота Fc = 82 Гц вместо расчётных 75 Гц

— соотношение частот 48/82 = 0,59, что близко к рекомендуемому значению 0,63

Для учебно-тренировочного саба, я считаю, нормально.

7. Проверка АС с щелевым ФИ.

Чтобы не мучиться в сомнениях, была проверена самодельная АС (проект «Дуб») по этой же методике.

Расчёт и проверка настройки фазоинвертора для акустической системы.

Я не видел расчёты, да оно мне и не интересно.

Вот результат:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Частота настройки ФИ 58 Гц,

Fc = 105 Гц.

Соотношение частот 58/105 = 0,55.

Вывод: ФИ щелевого типа получился немного ниже отметки -2/3 октавы.

8. И снова SVEN.

На этот раз версия BF-21R с уничтоженными динамиками и пультом ДУ (киндер погрыз).

Расчёт и проверка настройки фазоинвертора для акустической системы.

Из четырёх динамиков выжил только один НЧ.

В экспериментах с ФИ приняла участие пассивная колонка (естественно, после замены НЧ динамика на исправный).

После демонтажа динамиков:

Расчёт и проверка настройки фазоинвертора для акустической системы.

При помощи нецензурных выражений волшебных заклинаний выковырял ФИ:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Внутренний диаметр в средней части — около 34 мм, длина 75 мм.

Примечание: размеры ФИ отличаются о ФИ в версии BF-11 (ф31 х 65 мм).

Внутренний объём колонки BF-21 составляет 7,2 л.

За вычетом объёма, занимаемого магнитной системой НЧ динамика (0,2л) и трубой ФИ (0,1л),

объём колонки составляет 6,9 литра.

Считаем Fc по формуле выше:

Fc = 67,5 * sqtr (1 + 2,66/6,9) = 79,5 (Гц)

Запускаем JBL Speakershop:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Для диаметра ФИ ф34мм предлагается длина 12,4 см.

За одно обращаем внимание на расчёт для ЗЯ объёмом 6,9л: Fc=79,4 Гц (совпадает со значением, полученным вручную).

Проверка расчётов в онлайн-калькуляторе:

Расчёт и проверка настройки фазоинвертора для акустической системы.

По Т/С: 56,2 Гц

По Виноградовой: 51,5 Гц

И так, требуется удлинить трубу ФИ на 5 см (до длины 12,5 см).

В доме нашёлся цилиндрический флакон от таблеток:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Кот и таблетки
Расчёт и проверка настройки фазоинвертора для акустической системы.

Распилил пополам:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Укоротил куски трубок до 5см, соединил с ФИ при помощи остатков изоленты:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Длина 12,5 см.

После сборки проверка настройки ФИ:

Расчёт и проверка настройки фазоинвертора для акустической системы.

Частота настройки ФИ 49 Гц (против расчётных 51,5 Гц по Виноградовой),

Fc = 81 Гц (почти совпало с расчётным значением 79,5 Гц).

Соотношение частот 49/81 = 0,61. Тут всё ОК.

9. Выводы:

— метод измерения Z вполне работоспособен, можно пользоваться

— расчётные методы предсказывают, как гисметео выдают противоречивые цифры

— расчёт ФИ можно выполнять в программе JBL Speakershop

— проверку расчётов ФИ рекомендуется выполнять по Э. Л. Виноградовой

— проверка настройки ФИ по методу Z выдаёт цифры, очень близкие к тем, что получены по расчётам Э. Л. Виноградовой

При использовании метода Z проверена настройка ФИ трех самодельных АС.

Результаты положительные. ))

10. Приложение для апологетов Звука, неудержимо, но бестолково снимающих АЧХ сабвуфера (копипаст).

Я познакомлю вас с методом прямого измерения, который в отличие от компьютерного, не требует вычислений и даёт более достоверный результат.

Снятие АЧХ саба проводится в АБСОЛЮТОНО заглушенном помещении, вся внутренняя поверхность которого выложена матрасами, причём в два слоя. Но проще это сделать на открытом пространстве, чтобы до ближайшего гаража с розеткой было не менее 10 метров. Если динамик или ФИ направлены в пол, ставим сабвуфер на землю, на щит, если нет — садим как человека, на табуретку. Измерительный микрофон следует устанавливать сбоку от динамика и от ФИ одновременно, на примерно одинаковом расстоянии, и не ближе 1-1,5 метра от корпуса саба. В этом случае вы будете мерить совокупное звуковое давление динамика и ФИ.

Вот когда на открытом пространстве вы выровняете АЧХ саба, только после этого можно заносить его в комнату и выявлять влияние помещения на результирующую АЧХ. А до этого снятие АЧХ саба в ближнем поле и поднесение микрофона на 1 см к динамику, я считаю преждевременными. Да и вообще не нужными: вы ведь не прикладываете ухо к динамику саба и не слушаете саб «в ближнем поле» лёжа на полу? Это вам не СЧ и не ВЧ, которые измеряются и слушаются в пределах прямой видимости, это — Бас-с. Сильно сомневаюсь, что вы сможете правильно состыковать (срастить) АЧХ динамика и ФИ снятые по отдельности в ближних полях. Не получите вы истинную картину совокупного звукового давления ФИ и дина в окружающем сабвуфер пространстве, двигая графики по экрану компа, а саб по комнате.

Так что ступайте-ка ребята на свежий воздух, на травку. Оно и для музыки и для здоровья полезнее будет, т.к. измерения надо проводить в тёплую погоду, дабы подвес у дина не задубел. 🙂

Но и это не финиш. Игра продолжится, когда вы внесёте настроенный саб в комнату и начнёте бодаться с комнатными резонансами, модами. Очень увлекательно. 🙂

В этом заключается ещё один недостаток сабвуфера с ФИ: он капризен к месту своего расположения в комнате. Небольшое смещение саба приводит к заметному изменению комнатных резонансов, тогда как сабу типа ЗЯ практически по-фигу где стоять, лишь бы симметрия звука не нарушалась.

Сабвуферы с фазоинвертором — это какое-то недоразумение, игра фантазии инженеров-акустиков, которую подхватили и развили коммерсанты от музыки. Мода такая аудиофильская: да у меня в сабе трубы ФИ, как выхлопные в крутой тачке! Даже звук похож.

Поясню.

Саб с ФИ бессмысленно, а иногда и вредно подключать к ресиверу для просмотра фильмов и некоторых сортов музыки. В DVD-сигнале присутствуют частоты от 5-ти герц. Вся мощь ресивера ниже частоты настройки ФИ (от 5-ти до 30-40 гц) направлена на выблёвывание диффузора динамика на пол. Ни каких звуков в этой полосе саб не издаёт, в добавок можно покалечить динамик. Если же в ресивере или усилке саба стоит фильтр сабсоника, тогда динамик и диффузор останутся целы, но звуков от 5-ти до 30-40 гц, саб всё равно не издаст.

Вопрос: зачем тогда городить ФИ ?? Разве что для поп-музыки? Но для музыки гораздо лучше саб ЗЯ, к тому же он воспроизводит частоты ниже чем ФИ и при этом не идёт вразнос. Саб ЗЯ не бубнит, у него меньше ГВЗ, прекрасные переходные характеристики, он проще в расчётах и не требует настройки. А на КПД мне начихать, я не собираюсь экономить на громкости и качестве музона 30 ватт из розетки.

Так что по всем параметрам саб типа ЗЯ лучше, чем ФИ.

НО!

Только при условии, что в ЗЯ стоИт хороший, качественный динамик с F резонанса 18-25 гц, желательно с малой массой диффузора (и возможно двукратным запасом мощности для корректора Линквица). Вот мы и подошли к сути. Китайцы такие дины делать не умеют, а европейские хорошие динамики стОят ох, не дёшево. Вывод очевиден: в сабвуферах типа ФИ почти наверняка стоИт паршивый динамик и саб имеет все перечисленные выше недостатки. Зато он громко бУхает, дёшев для невзыскательного потребителя (а таких большинство) и на нём можно сделать прибыльный бизнес. Массовый бизнес. Сабвуфер с ФИ — дешёвка, изделие для тугоухих, скаредных или малообеспеченных.

Акустический фазоинвертор был изобретён Альбертом Турасом в 1932 году, во времена, когда не было приличных басовых динамиков, но сейчас-то зачем?

Во времена винила и живых инструментов с нижней частотой 30-40 Гц фазоинвертор был очень кстати. Но в век электронных синтезаторов и DVD-записи, когда диапазон уходит в область инфразвука, фазоинвертор, мягко говоря, устарел и неспособен воспроизводить современный диапазон частот. Сабвуфер с ФИ — это атавизм, пережиток прошлого. Я ещё раз напоминаю: фазоинвертор — это резонатор. Для прослушивания музыки акустические резонансы вещь вредная и неприятная, от них стараются избавиться всяческими способами: и демпфирование, и эквализация, и фильтры, и пр.

А вот так взять, и своими руками врезать в сабвуфер диджериду..?

И потОм уверять себя, что всё звучит хорошо? Нет уж, увольте.

Моё личное предпочтение: саб ЗЯ.

Наличие ФИ может быть в некоторой степени оправдано применением в малогабаритной акустике, но это уже не Звук, и тем более не Бас. Единственное применение сабвуфера с фазоинвертором с минимальным ущербом для качества звука, это имитация взрыво- и громоподобных эффектов в кинушках и игрушках. Там высокий КПД себя оправдывает. Для музыки же ФИ неприемлем. ИМХО. ©

Расчёт и проверка настройки фазоинвертора для акустической системы.

Всем удачных разработок!

Скоро на наших экранах:
Расчёт и проверка настройки фазоинвертора для акустической системы.


СМОТРИ ТАКЖЕ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *